This study didn't establish the claim of the title: Brain Is Command Center for Aging. But it is interesting and shows a way in which the brain is involved in controlling aging processes.
WIKIMEDIA, RAMA
Inflammation in the hypothalamus may induce degeneration in tissues throughout the body.
Brain Is Command Center for Aging
By Kate Yandell
Inflammation in the hypothalamus may underlie aging of the entire body, according to a study published today (May 1) in Nature. Over-activation of the inflammatory protein nuclear factor kB (NF-κB) in the brain region leads to a number of aging-related changes in mice, from cognitive decline to muscle weakness. Unexpectedly, this process promotes aging at least in part by suppressing gonadotropin-releasing hormone (GnRH), which stimulates adult neurogenesis.
“I think it’s pretty exciting,” said Brian Kennedy, CEO of the Buck Institute for Research on Aging in California, who was not involved in the study. “It’s one of the first studies to modulate inflammatory pathways [to] show effects on longevity.”
“The hypothalamus has been one of our focuses for many years,” said Dongsheng Cai, one of the paper’s authors and medical scientist at the Albert Einstein College of Medicine. “It is tiny, but it is a very crucial structure in the brain in terms of regulation of life-supporting activities,” such as metabolism, reproduction, and growth.
NF-κB is transcription factor that, among other functions, turns on genes involved in inflammation and immune response, and can be activated in the presence of pro-inflammatory cytokines. The researchers measured NF-κB activation in mouse brains as they aged and noted that, while the protein was barely active in the hypothalamuses of young mice, it became increasingly active as the mice got older.
Keep reading: Brain Is Command Center for Aging | The Scientist Magazine®.
Original Study in Nature:
Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH
Abstract:
Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IκB kinase-β (IKK-β), nuclear factor κB (NF-κB) and related microglia–neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-β and NF-κB activation. Mechanistic studies further revealed that IKK-β and NF-κB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing.
In conclusion, the hypothalamus has a programmatic role in ageing development via immune–neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.